Bueni sanucku THY imeni B.1. Bepnancpkoro. Cepisi: TexHiuHi Hayku

UDC 004.415.2
DOI https://doi.org/10.32838/2663-5941/2020.5/11

Yerastova V.V.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Oleshchenko L.M.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Yurchyshyn V.Ya.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

FORECASTING SOFTWARE MARKET PRICE USING BACK
PROPAGATION NEURAL NETWORK

This research uses backpropagation artificial neural network to examine whether it is capable of adequately
capturing software cost complexities in weight space, to enable it to make accurate estimates.

The input for this task is a set of open information about the software of a certain type. Because of the
openness criterion, it was decided to choose mobile apps for Android, full information of this type of software
is available on an open source Google Play Market. The purpose of the developed software is to reach
the Google server in real time and to receive up-to-date information on the current situation in the mobile
application market.

Within the collected data set, backpropagation artificial neural network appears to indicate the potential
to be developed into good sofiware price estimation models. The model is not difficult to develop and has the
flexibility of being able to incorporate additional attributes as input if special circumstances warrant their
inclusion. Neural network has the ability to capture knowledge of the complex interrelationships in weight
matrix to make predictions.

For this research the data were divided into three sets. The training set, the test set, and the validation set.
The data for each category were randomly chosen, except that the data in the test and validation sets was not
allowed to be larger or smaller than the largest and smallest features respectively in the training set. This was
done so that predictions were not made outside the data range on which the network had been trained. The
inputs were rating, number of ratings, number of downloads, number of reviews, in-app purchases, number of
supported languages. The accuracy of the price estimate was taken as the Root Mean Square Error (RMSE).

Key words: software, market price, software price estimation models, dataset, backpropagation artificial

neural network.

Introduction. Problem statement. In today’s
economic environment the development and imple-
mentation of new technologies is especially impor-
tant for the successful competition of companies. An
important element in making investment decisions
for technological projects is to evaluate their effec-
tiveness. As the market of the purchase/sale of new
technologies exists and functions, there is a need to
determine the value of the development.

Estimating the cost of technology is needed to
analyze the profitability of current and future tech-
nological projects and the feasibility of investments.

The ability to estimate the potential benefits
and losses from the project in the early stages, to ana-
lyze possible scenarios of the development of events
becomes very important. According to statistics,
about a quarter of all projects is completed on time,
a quarter is canceled and about half of all projects are

64 Tom 31(70) N2 52020

over budgeted or overdue. Most of the reasons are
due to incorrect project cost estimates.

Related research. The beginning of intensive
studies in the field of cost estimation modeling dates
back to 1965-1966, when E.A. Nelson, a member
of the System Development Corporation (SDC), who
carried out a study on calculating the cost of soft-
ware for the US Air Force, published a work entitled
“Management Handbook for the Estimation of Com-
puter Programming Costs™ [1].

Since that time, a lot of models for estimating
the cost of software have appeared. Depending on
the method of obtaining the initial data in determin-
ing the cost and labor costs of developing a software
product different methods and models of software
cost estimation are offered.

Among the non-algorithmic methods the most
commonly used are:



IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

— Price-to-win. The method is based on the prin-
ciple that the client is always right. The essence
of the method is that regardless of the estimated
actual costs of project development, the cost estimate
of the software is adjusted according to the wishes
of the customer [2].

— Expert evaluation. The method is based on
the principle of peer review and is used in projects that
use new technologies, new processes or solve inno-
vative tasks. The evaluation process involves design
engineers who self-evaluate their part of the project.
Thereafter, a meeting is convened, at which the results
of the individual assessments are integrated into a sin-
gle, coherent system [3].

— Evaluation by analogy. As a kind of peer
review, it often stands out as a separate method. The
method is based on the principle of analogy. Evalua-
tion by analogy, like algorithmic models, uses empir-
ical data on the characteristics of completed projects.
The key difference is that algorithmic models use this
data in a way, for example, to calibrate model param-
eters, and the method of estimation by analogy with
empirical data allows us to select similar projects [4].

The software cost estimation model is one or
more functions that describe the relationship between
the characteristics of the project and the costs of its
implementation.

Models are divided according to the type of func-
tions into linear, multiplicative, power ones and the use
of historical data into empirical and analytical ones.
The most commonly implemented and well-docu-
mented models are SLIM [5] and COCOMO [6].

Nevertheless, it is equally important to be able to esti-
mate the competitive price of a product within the exist-
ing software market, that is not allowed in existing eval-
uation models. For this purpose, the use of assessment
methods with the ability to study is the most appropri-
ate, these are updated methods of evaluation by analogy
with the subsequent training using artificial intelligence
techniques (such as neural networks).

Nowadays, machine learning uses analytical
models and algorithms that are continually refined
through data-driven learning so that computers can
capture hidden meaning without being programmed
to where to look for it. This means that scientists
and data analysts can teach computers to solve prob-
lems without setting rules for each new set of data.
Using algorithms that are learned by studying hun-
dreds and thousands of samples of data, comput-
ers can solve a similar problem in a new situation,
making a prediction based on experience. And they
do it with an accuracy that is already comparable to
the human intellect.

The value of neural network modelling tech-
niques in performing complicated pattern recognition
and non-linear estimation tasks has been demon-
strated across an impressive spectrum of applications.

This study uses backpropagation artificial neural
networks to examine whether they are capable of ade-
quately capturing software cost complexities in their
weight space, to enable them to make accurate estimates.

Problem solution and results. The prediction
task is first and foremost the task of data analysis. For
any data analysis problem, there are major steps to
solving it. General scheme of the forecasting task is
presented in the Fig. 1.

1

A dataanalysis 4

)

Interpret
results and
apply them

4
Begin

analyzing
the data

Fig. 1. General scheme of the forecasting task

In this case, the goal is to predict the market value
of the software. The next step is data preparation,
which involves identifying data sources for analy-
sis, combining and cleaning them. The required data
can be in different databases and on different servers.
Moreover, they can be presented in the form of text
files, tables, in different formats.

The collected data usually requires additional
processing, which called cleaning. The output of this
step should be structured data in the form of a rec-
tangular table, where each row represents a separate
case, object or condition of the investigated object,
and each column — the parameters, properties or char-
acteristics of all investigated objects.

The next step is to build a model. The model
includes a reference to the data mining algorithm
and its parameters, as well as the analyzed data.
The model may be trained in applying the selected
algorithm to the training dataset. After that, it stores
the identified patterns.

The last step is to test the model. The purpose
here is to evaluate the quality of the model created.
When solving forecasting problems, the quality of the

65



Bueni sanucku THY imeni B.1. Bepnancpkoro. Cepisi: TexHiuHi Hayku

forecast given by the model can be verified on a test
set that knows the value of the forecast parameter.

Data collection. The input for this task is a set
of open information about the software of a certain
type. Because of the openness criterion, it was decided
to choose mobile apps for Android, full information
of this type of software is available on an open source
Google Play Market. The purpose of the developed
software is to reach the Google server in real time
and to receive up-to-date information on the current
situation in the mobile application market. At this
time, Google does not provide the official API to
access mobile app data hosted on the Play Market.
Several API’s for access to data were considered:

1. Google Play Unofficial Python API (https:/
github.com/egirault/googleplay-api).

2. Python Android Market Library (https://github.
com/liato/android-market-api-py).

3. 42matter (https://42matters.com).

The third option was the most suitable for this pre-
diction task, because HTTP-request GET that POST
of this RESTful API allows to get all the meta-data
of any application in a convenient for the next pro-
cessing format JSON (Fig. 2).

It was decided to select software features that
could affect the price of the analogue product as a key
feature of the received information.

The first feature is an app rating. Rating is the defini-
tion of an estimation parameter or group of parameters

according to a certain estimation algorithm, according
to a given ranking scale. In fact, rating is a measure
of the popularity of anything. The rating is determined
by the survey method of a large target group or a lim-
ited group of experts. The Google Play Store service is
ranked by users. It is presented as 5 stars, with 5 stars
being the best rating and 1 star being the lowest.

The next feature is the number of ratings. This
parameter represents the total number of users who
rated the app from 1 to 5 stars. Also, the attributes are
the number of individual app ratings, that is, the number
of users who rated the app 1 star, the number of users
rated 2 stars, and so on. We get five more features.

Another feature is the number of downloads.
Downloading an application is transferring the appli-
cation data from the Google Play Market to the device
and installing it. That is, this parameter shows
the number of users who installed the application on
their device. Another important feature is the num-
ber of feedbacks. Feedback is an opinion of users is
based on an affirmative attitude toward the app on
Google Play Market. Another feature is the presence
of in-app purchases provided by the in-app purchase
of virtual goods, services, or digital content.

Also, quantity of supported languages in the appli-
cation was selected as feature. This feature shows
how many languages are available in the Google Play
Market app. The dependent characteristic, which is
called the target variable, is the price of the applica-

"number_results™: 4851879,
“results™: [
{
“rating®: 4.85710521804854,
"downloads_min®: 1000000800,
“cat_keys®: [
"SOCIAL",
“APPLICATION
1.
“price®: %,
"cat_int": 19,
“ratings_2": 1287375,
“ratings_1": 9932396,
“ratings_4%: 11494899,
“ratings_3%: &712011,
oy _widea™: °%,
"ratings_5": 44508093,

“interactive_slesents™: [
“Users Interact®,
“Shares Info®,
“Shares Location™

s

“price_i18n_countries®: [
1
“size™: 13766524,
"cat_type": @,

“app_availability™: {
"available in": [

“ereated™: “1011-12-27T17:48:05+09:88",

*version™: "Varies with device™,

"market_update”: "I01E-02-26T00 000000807,
“short_desc®: “Find friends, watch live videss, play gases & save photos in your social me

Fig. 2. Result of the request to API

66 Tom 31(70) N° 52020



IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

tion. After the data is collected, it must be prepared.
This stage is called preprocessing. The main task
of preprocessing is to display data in a format suitable
for learning the model. For this purpose, unnecessary
information was deleted and all data was normalized.

Neural network model. For this research, back-
propagation artificial neural network models were used.
Backpropagation networks are the most generalised neu-
ral networks currently in use and this approach was cho-
sen in preference to Hopfield and Kohonen networks.
As software development estimation is not a time series
problem, approaches such as finite impulse response
(FIR) and recurrent networks were not considered.

The backpropagation network requires data from
which to learn. To learn the network calculates
the error, which is the difference between the desired
response and the actual response, and a portion of it
is propagated backward through the network. At each
neuron in the network the error is used to adjust
weights and threshold values of the neuron, so that
at the next epoch the error in the network response
will be less for the same inputs. This corrective pro-
cedure is called backpropagation and is applied con-
tinuously for each set of inputs or training data. The
training data should consist of as much relevant data
as possible. In practice one does not usually have
the luxury of a perfect training data set. The Back-
propagation algorithm looks for the minimum value
of'the error function in weight space using a technique
called the delta rule or gradient descent. The weights
that minimize the error function is then considered to
be a solution to the learning problem (Fig. 3).

For this research the data were divided into three
sets. The training set, the test set, and the validation
set. The data for each category were randomly cho-

[
[
[
[
[
[
| ‘
[
i
"
i
i
i
[
[
[
[
[
[
[
[

x,

ey Calculate the error 8

Mo
Update the parameters
|

sen, except that the data in the test and validation sets
was not allowed to be larger or smaller than the larg-
est and smallest features respectively in the train-
ing set. This was done so that predictions were not
made outside the data range on which the network
had been trained. The inputs were rating, number
of ratings, number of downloads, number of reviews,
in-app purchases, number of supported languages.
The target against which the network was trained was
the price of the application in the training set. The
accuracy of the price estimate was taken as the Root
Mean Square Error (RMSE).

To try and improve the network performance,
the learning rate and momentum were varied, as was
the network architecture. Models with one through
to six hidden layers were developed. Consistently
the models with just a single hidden layer performed
better, while the models with multiple hidden layers
in many instances did not converge. Various activa-
tion functions were tried, and the popular sigmoid
function consistently gave the best results.

There is no clearly defined theory which allows
for the calculation of the ideal parameter settings
and as a rule, even slight parameter changes can
cause major variations in the behavior of almost all
networks. It is through a process of trial and error
and experience that settings are selected which will
result in a reduced average prediction error. The
settings of the learning rate and momentum con-
trol the way in which the error is used to correct
the weights in the neural network foreach train-
ing case. When the learning rate is set to high val-
ues (close to 1) there is the possibility of unstable
behavior, as evidenced by widely varying average
error values. When the learning rate is set lower, the

Training

| Model is ready to make prediction

Fig. 3. Training a model

67



Bueni sanucku THY imeni B.1. Bepnancpkoro. Cepisi: TexHiuHi Hayku

possibility of unstable behavior is reduced, but train-
ing times are increased and there is a greater probabil-
ity of getting stuck in local error minima. The higher
the momentum, the larger the percentage of previous
errors that is applied to the weight adjustment in each
training case [8]. For this set of data a learning rate
of 0.2 and a momentum of 0.5 gave good results. The
neural network architecture of a single hidden layer

of the application with higher rating. For the remaining
applications, the estimated price was more accurate.

Conclusions and future work. Within the collected
data set, backpropagation artificial neural networks
appear to indicate the potential to be developed into
good software price estimation models.

The model is not difficult to develop and has the flex-
ibility of being able to incorporate additional attributes

as input if special circumstances warrant their inclusion.
Neural networks have the ability to capture knowledge
of the complex interrelationships in their weight matrix
to enable them to make predictions. Further research
will be conducted to use larger set of training examples,
that covers all possible values of software characteris-
tics. It will allow to make training networks more stable.
Also semantic analysis of application reviews is of inter-
est. This type of analysis can provide an opportunity to
identify positive and negative references in order to bet-
ter prioritize applications.

using a sigmoid activation function tended to result in
the lowest average prediction error. The best results
were obtained with a 17-5-1 architecture.

Analysis of data. Network models were devel-
oped with various combinations of inputs selected
from the attributes mentioned above. The results were
ambiguous, because prediction errors were erratic. An
examination of the results showed that the network
overestimate the price of the application with lower rat-
ing and worse indicators, as well as underestimate price

References:

1. Nelson E.A. Management Handbook for the Estimation of Computer Programming Costs. AD-A648750,
Systems Development Corp., 1966. 141 p.

2. Boehm B.W. Software engineering economics. Prentice-Hall, 1981. 320 p.

3. Coates J. Technological Forecasting and Social Change. Elsevier Science Inc., 1999. 235 p.

4. Shepperd M.C. Schofield Estimating software project effort using analogy. IEEE Trans Software Eng., 1997.
P. 736-743.

5. Heires J., Doing T. More with Less: SLIM-Estimate 5.0 Product Review. QSM Software, 2002. 46 p.

6. Boehm B.W. The COCOMO 2.0 Software Cost Estimation Model. American Programmer, 2000. 586 p.

7. Menzies T., Shepperd M. Special Issue on Repeatable Results in Software Engineering Prediction. Empirical
Software Eng. 2012. Vol. 17. No. 1. P. 1-17.

8. Tadayon N. Neural network approach for software cost estimation. Information Technology: Coding and
Computing : International Conference on. 2005. ITCC 2005. Vol. 2. IEEE, 2005. P. 815-818.

€pacrosa B.B., Ostemenko JI.M., IOpunmun B.SI. MIPOTHO3YBAHHS PUHKOBOI I[THA
MMPOT'PAMHOTI'O 3ABE3NEYEHHS 3 BAKOPUCTAHHAM HEMPOHHOI MEPEXI

3BOPOTHOI'O MOUIUPEHHSA

Y 0ocniooicenni sukopucmogyemucs HetpOHHA Mepedca 360POMHO20 NOWUPEHHS OISl 020, W0O GUSHUMU,
Yy 30amHa 8OHA AOEK8AMHO (PIKCys8amu CKAAOHICMb S8UMPAM HA NPOSPAMHE 3a0e3NedeHHs )y 8a2080M)
npocmopi 0151 OMPUMAHHI MOYHUX OYIHOK.

Bxioni oawni ons 3aé0anns — ye madip 6i0kpumoi ingopmayii npo npocpamme 3a06€3NeUeHHs NEeGHO20
muny. /s 3abe3neuenns Kpumepilo giOKpumocmi 0yno 0opano mobinvui dodamxu onsi Android, nosna
iH(hopmayisi npo yel mun npocpamHo2o 3abe3neyeHHsi 00CmynHa Ha siokpumomy kooi Google Play Market.
Memoro pospobnernozo npocpamnozo 3abe3neyenns € docmyn 0o cepsepa Google 6 pedxicumi peairbHozo uacy i
OMPUMAHHA AKMYAIbHOT IHpopMayii npo NOMouHy cumyayito Ha pUHKY MOOIIbHUX 000AMKIE.

Y mexcax 3ibpanoco nabopy Oanux HeEUpOHHA Mepexca 360POMHO20 PO3NOBCIOONCEHHSA BKA3VE HA
nomenyia, KUl MOJ}CHA NePemOPUmMU Ha Xopouii MoOeni OYiHKY Yin Ha npocpamue 3abe3neuenns. Mooenw
SHYUKA, OCKINbKU MOdice Micmumu 000amKkogi ampuOymu, maxi sik 6XiOHi Oami, Kuo 0coonusi obcmasunu
suUMazaromy ixuvbo2o exmoueHns. Hetipouna mepesca 360pomuoco nowupents mac 30amuicms Qikcysamu
SHAHHSA NPO CKAAOHI 83AEMO38 SI3KU Y CB0Ill 6a206ili Mampuyi, ujo 00380J5€ il pOOUMU NPOSHO3U.

s 0ocnioscenns oani Oyau po3oineni Ha mpu epynu: HagualbHULl HaOIp, Habip mecmis i HabIp nepesipox.
Jlani ons xooicnoi xameeopii Oyiu 00pani 6UNAOKOBUM YUHOM, 3A GUHAMKOM MO20, WO OaHi 8 HAbopax 0is
mMecmysanHs ma nepesipku He Maiu npasa Oymu OLIbuUMU Y MEHWUMY, HIJC HAUOLIbWI 1 HAUMEHU O3HAKU
8I0N0GIOHO 6 HasuanbHOMy Habopi. Lle 6yn0 3pobreHo 01 Mmo2o, wod NPocHO3U He POOUNU 3 MENCAMU
0ianasony O0QHUX, HA AKOMY MPEHY8andcs mepedica. Bxionumu oanumu Oyau peumumne, KilbKicmb OYIHOK,
KLIbKICMb 3A6aHMANCEHb, KLILKICMb 0271510168, NOKYNKU 8 000AMKY, KilbKicmb niompumyeanux mos. Tounicmo
OYIHKU YIHU NPOSPAMHO20 3a6e3neuenHs 0yia npuliHAma K cepedHvokeadpamuyna nomuaka (RMSE).

Knrwuosi cnosa: npocpamue 3abesneuents, puHKosa yind, Mooeii OYiHKU YiHU NPOSPAMHO20 3a0e3neyeHHs,
HaOIp 0anux, HelPOHHA Mepedica 360POMHO20 NOUUPEHHSL.

68 Tom 31(70) N° 52020



